13 = − 1 g( x ) x 1 424 3 at y = g( x ) = f −1 ( x ) = hs ol f ( x ) = 3x 2 + 1 ⇒ 3x 2 + 1 = y y −1 x2 = 3 y −1 x= 3 ar 1. Ubah bentuk y = f ( x) menjadi x = g( x) domainnya x > 1 dan fungsinya monoton turun 13. 1 adalah g( x).m Jadi range dari ⇒ lim+ x →1 f −1 ( x ) = x−1 3 1 3 = lim+ =∞ → 1 x g( x ) x−1 1 3 lim = lim+ =0 x →∞ g( x ) x →1 x−1 {y|y > 0} Ingat!
7SMP. Matematika. ALJABAR. Diketahui bahwa (1 + 1/2) (1 + 1/3) (1 + 1/4) (1 + 1/5) (1 + 1/n) = 11. Berapakah nilai n yang memenuhi? a. Sederhanakan bilangan yang di dalam kurung. b. Amati pola perkalian beberapa bilangan awal. c. Dengan mengamati, tentukan nilai n yang yang memenuhi persamaan di atas.
Tunjukkanbahwa $\lim (1/3)^n = 0.$ Jawab: Perhatikan bahw untuk setiap bilangan asli $n,$ berlaku bahwa $n<3^n.$ Dari sini, $$\frac{1}{3^n}<\frac{1}{n}$$Karena $\lim (1/n) = 0,$ maka berdasarkan teorema 1, diperoleh bahwa $$\lim \left( \frac{1}{3^n} \right)= 0$$ Soal 14 Misalkan $b\in \mathbb{R}$ memenuhi $0Vay Tiền Nhanh Chỉ Cần Cmnd. Postingan ini menyajikan pembahasan soal OSK Matematika tahun 2019 kemampuan dasar. OSK adalah Olimpiade sains tingkat Kabupaten / Kota Calon tim olimpiade Indonesia tahun 2020. Jumlah soal OSK matematika kemampuan dasar adalah 10 soal. Durasi waktu pengerjaan soal ini adalah 60 1 – Pak Budi memiliki sawah berbentuk huruf L. Jika diketahui bahwa sawahnya Pak Budi hanya memiliki sisi yang panjangnya 5 meter dan 10 meter dan semua sudut sawahnya siku-siku, luas sawah Pak Budi adalah… meter pak Budi dapat digambarkan sebagai berikutPembahasan soal OSK matematika 2019 nomor 1Berdasarkan gambar diatas, sawah Pak Budi terdiri dari 2 bangun yaitu persegi panjang warna merah dan persegi warna kuning.Luas persegi panjang = p x l = 10 cm x 5 cm = 50 cm2Luas persegi = s x s = 5 cm x 5 cm = 25 cm2Luas sawah = 50 cm2 + 25 cm2 = 75 cm2Soal 2 – Jika sebuah jam sekarang menunjukkan pukul 1300 maka 2019 menit yang lalu jam tersebut menunjukkan pukul…PembahasanUntuk menjawab soal ini kita konversi terlebih dahulu 2019 menit menjadi jam yaitu 2019 / 60 jam = 33,65 jam = 24 jam + 9,65 1 hari = 24 jam maka jam kembali ke pukul 1300 lagi. Jadi 2019 menit yang lalu menunjukkan pukul 13 – 9,65 = 3,35 = 3 + 0,35 jam. Selanjutnya 0,35 jam dikonversi ke menit menjadi 0,35 x 60 = 21 menit. Jadi jam saat itu menunjukkan pukul 03 3 – Kedua akar persamaan kuadrat x2 – 111x + k = 0 adalah bilangan prima. Nilai k adalah…PembahasanPada soal ini diketahui a = 1, b = -111 dan c = k. Misalkan kedua akar persamaan kuadrat x1 dan x2 maka berdasarkan rumus jumlah dan hasil kali akar-akar persamaan kuadrat diperolehx1 + x2 = – b/a = – -111/1 = 111x1 . x2 = c/a = k/1 = kBilangan yang tepat untuk x1 = 2 dan x2 = 109 karena 2 dan 109 bilangan prima2 + 109 = 1112 . 109 = 218Soal 4 – Ani dan Banu bermain dadu enam sisi. Jika dadu yang keluar bernilai genap, maka Ani mendapatkan skor 1 sedangkan jika dadu yang keluar bernilai ganjil, maka Banu yang mendapatkan skor 1. Pemenang dari permainan ini adalah orang pertama yang mendapatkan skor total 5. Setelah dilakukan pelemparan dadu sebanyak 5 kali, Ani mendapatkan skor 4 dan Banu mendapatkan skor 1. Peluang Ani memenangkan permainan ini adalah…PembahasanKarena pemenang permainan ini adalah orang yang mendapatkan skor 5 maka jumlah maksimal pelemparan = 9. Ani akan menang jika Banu kalah. Banu akan menang jika dalam 4 pelemparan terakhir muncul mata dadu bernilai ganjil. Peluang Banu menang sebagai berikutPeluang muncul mata dadu ganjil = 3/6 = 1/2Peluang Banu menang = 1/2 x 1/2 x 1/2 x 1/2 = 1/16Jadi peluang Ani menang = 1 – 1/16 = 15/16 menggunakan rumus peluang komplemen.Soal 5 – Diketahui a + 2b = 1, b + 2c = 2, dan b ≠ 0. Jika a + nb + 2018c = 2019 maka nilai n adalah…PembahasanPembahasan soal OSK 2019 matematika nomor 5Jadi n = 6 – Misalkan a = 2 √ 2 – √ 8 – 4 √ 2 dan b = 2 √ 2 + √ 8 – 4 √ 2 . Jika ab + ba = x + y √ 2 dengan x, y bulat, maka nilai x + y = …PembahasanPembahasan soal OSK matematika 2019 nomor 6Soal 7 – Diberikan trapesium ABCD dengan AB sejajar CD. Misalkan titik P dan Q berturut-turut pada AD dan BC sedemikian sehingga PQ sejajar AB dan membagi trapesium menjadi 2 bagian yang sama luasnya. Jika AB = 17 dan DC = 7 maka nilai PQ adalah…PembahasanTrapesium soal OSK matematika 2019Segitiga BXC sebangun dengan segitiga QYC sehingga berlaku hubungan sebagai berikutBXQY = CXCY 5QY = m + nn m + n = 5nQY Luas trapesium ABCD = 2 luas trapesium DCQP1/2 AB + CD . CX = 2 . 1/2 DC + QP . n1/2 17 + 7 m + n = 7 + 7 + 2 QY . n12 5n/QY = 14 + 2 QYn60 = QY 14 + 2QY2Qy2 + 14QY – 60 = 0QY2 + 7QY – 30 = 0QY – 3 QY + 10 = 0QY = 3 atau QY = -10QY = -10 tidak mungkin sehingga panjang PQ = 7 + 2 QY = 7 + 2 . 3 = 8 – Tujuh buah bendera dengan motif berbeda akan dipasang pada 4 tiang bendera. Pada masing-masing tiang bendera bisa dipasang sebanyak nol, satu atau lebih satu bendera. Banyaknya cara memasang bendera tersebut adalah…PembahasanUntuk menjawab soal ini kita gunakan permutasi P 10, 7 sebagai berikutP 10, 3 = 10!10 – 7! P 10, 3 = 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3!3! P 10, 3 = 9 – Misalkan n adalah bilangan asli terkecil yang semua digitnya sama dan sedikitnya terdiri dari 2019 digit. Jika n habis dibagi 126, maka hasil penjumlahan semua digit dari n adalah…PembahasanBilangan terkecil dengan digit sama yang habis dibagi 126 adalah 6 digit. Angka selanjutnya adalah 6 sebanyak kelipatan dari 6 12, 18, 24 dan seterusnya, contohnya sebagai berikut 12 digit 18 digit 24 digitDan seterusnyaPada soal ini sedikitnya terdiri dari 2019 digit, sehingga tentukan kelipatan 6 setelah 2019. Caranya kita bagi 2019 dengan 6 2019 6 = 336,5 atau dibulatkan menjadi 337. 6 x 337 = 2022. Jadi bilangan terkecil yang semua digitnya sama dan sedikitnya terdiri dari 2019 digit adalah 6 sebanyak 2022. Jika dijumlah maka hasilnya adalah 6 x 2022 = 10 – Untuk sebarang bilangan real x, simbol ⌊x⌋ menyatakan bilangan bulat terbesar yang tidak lebih besar daripada x, sedangkan ⌈x⌉ menyatakan bilangan bulat terkecil yang tidak lebih kecil dibanding x. Interval a, b adalah himpunan semua bilangan real x yang memenuhi ⌊2x⌋2 = ⌈x⌉ + 7. Nilai a . b adalah…Pembahasan⌊2x⌋2 = ⌈x⌉ + 74x2 – x – 7 = 0a = 4, b = – 1 dan c = – 7Determinan D = b2 – 4acD = -12 – 4 . 4 . -7 = 113 bukan bulangan kuadrat sempurna sehingga x bukan bilangan bulatx bukan bilangan bulat, misalkan x = ⌊x⌋ + α 0 < α < 1/2 maka ⌊2x⌋ = 2 ⌊x⌋ dan ⌈x⌉ = ⌊x⌋ + 1⌊2x⌋2 = ⌈x⌉ + 72⌊x⌋2 = ⌊x⌋ + 1 + 74⌊x⌋2 = ⌊x⌋ + 84⌊x⌋2 – ⌊x⌋ – 8 = 0Determinan D = b2 – 4acD = 12 – 4 . 4 . -8 = 129 bukan bilangan kuadrat atau x bukan bilangan bulatx bukan bilangan bulat, misalkan x = ⌊x⌋ + α 1/2 < α < 1 maka ⌊2x⌋ = 2 ⌊x⌋ + 1 dan ⌈x⌉ = ⌊x⌋ + 1⌊2x⌋2 = ⌈x⌉ + 72⌊x⌋ + 12 = ⌊x⌋ + 1 + 74⌊x⌋2 + 4 ⌊x⌋ + 1= ⌊x⌋ + 84⌊x⌋2 + 4 ⌊x⌋ – ⌊x⌋ + 1 – 8 = 0 4⌊x⌋2 + 3 ⌊x⌋ – 8 = 0Determinan D = b2 – 4acD = 32 – 4 . 4 .- 8 = 121 kuadrat dari 11⌊x⌋1,2 = -3 ± √ 32– 4 . 4 . -8 2 . 4 ⌊x⌋1,2 = -3 ± √ 121 8 ⌊x⌋1,2 = -3 ± 118 ⌊x⌋1 = 1 atau ⌊x⌋2 = – 14/8 = – 7/4 tidak mungkin x = ⌊x⌋ + αx = 1 + 1/2 = 1,5x = 1 + 1 = 2Jadi a . b = 1,5 x 2 = 3
MatematikaALJABAR Kelas 10 SMASkalar dan vektor serta operasi aljabar vektorOperasi Hitung VektorDiketahui bahwa a=1 2 -3, b=4 4 m, dan c=3 -4 5 . Jika a tegak lurus b , maka hasil dari a+2 b-c=.Operasi Hitung VektorSkalar dan vektor serta operasi aljabar vektorALJABARMatematikaRekomendasi video solusi lainnya0334Diketahui A1,2,3, B3,3,1 , dan C7,5,-3 . Jika A...0342Diberikan titik A3,-5,-4, B6,-1,3 dan C12, n, m. Ji...0329Diketahui titik A3,-2,-1, B1,-2,1, dan C7,p-1,-5 se...0309Diketahui P,Q, dan R adalah titik dalam ruang. Jika PQ=2...
Jakarta - Soal induksi matematika berisi tentang rumus atau teknik pembuktian dalam matematika. Teknik induksi matematika diperkenalkan oleh De Morgan pada abad dari buku 'Matematika Diskrit' karya Gede Suweken, induksi matematika memiliki dua prinsip yakni prinsip induksi lemah dan prinsip induksi Prinsip Induksi Matematika LemahPrinsip ini dinyatakan dengan Pn adalah suatu pernyataan tentang suatu bilangan asli n, dan q adalah suatu bilangan asli yang tertentu fixed.Maka bukti induktif bahwa Pn adalah benar untuk semua n ≥ q dilakukan melalui 2 dua langkah berikuta. Langkah awal Tunjukkan bahwa Pq adalah Langkah induksi Tunjukkan bahwa untuk k 2 q bilangan asli, jika Pk benar, maka Pk+1 juga dua langkah di atas, maka terbukti bahwa Pn benar untuk semua bilangan asli n ≥ q. Induksi matematika versi ini dikatakan lemah, karena pada langkah induksinya mengasumsikan Pn benar untuk satu n di sini tidak berarti bahwa bukti yang ditampilkan kurang soal induksi matematika lemahPerhatikan contoh soal induksi matematika berikut bahwa 1+2+3+...+n=½nn+1 untuk semua n bilangan Pn adalah pernyataan bahwa 1+ 2+ 3+ ... + n/2 nn+1. Tujuan kita adalah menunjukkan bahwa pernyataan Pn tersebut benar untuk semua n bilangan awal Kita harus menunjukkan bahwa P1 benar. Dalam hal ini P1 adalah pernyataan yang bunyinya 1=11+1, yang tentu saja benar. Jadi P1 Induksi Kita harus menunjukkan bahwa jika Pk benar, Pk+1 juga hal ini jika, 1 + 2 + 3 + ... + k = 1/2 kk+1 apakah 1 + 2 + 3 +...+ k + k+ 1 = ½ k+ 1 k+1+1= ½ k+1k+2?Tentu saja 1+2+3+...+k+ k+1= ½ kk+1 + k+1 = k+1[2k + 1] = k+1 k+2 = ½ k+1 k+2.Jadi jika Pk benar, ternyata Pk+1 juga benar. Dengan dua bukti tersebut maka Pn, pernyataan bahwa 1+2+3+...+ n = ½ nn+1 adalah benar untuk semua n bilangan Prinsip Induksi Matematika KuatDalam hal ini, proses induksi tidak cukup hanya menunjukkan bahwa jika pernyataan P benar untuk satu kasus k ≥ q tapi juga benar untuk pernyataan k+1, yaitu pernyataan Pk+1.Dalam hal tersebut harus ditunjukkan bahwa P benar untuk semua kasus Pq+1, Pq+2, Pq+3,..., Pk.Jadi proses pembuktian Induksi Matematika secara kuat strong mathematical induction bahwa Pn benar untuk semua n ≥ q adalah sebagai berikuta. Langkah awal Tunjukkan bahwa Pq benarb. Langkah induktif Tunjukkan bahwa untuk k 2 q, jika Pq+1, Pq+2, Pq+3, ..., dan Pk benar, maka Pk+1 juga pembuktian ini adalah kuat dalam artian bahwa dalam langkah pembuktian induktifnya. Kita memiliki lebih banyak informasi dibandingkan dengan pembuktian yang sifatnya soal induksi matematika kuatTunjukkan bahwa setiap bilangan asli lebih dari 1 dapat dinyatakan sebagai hasil kali atas faktor-faktor P adalah pernyataan bahwa setiap bilangan asli lebih dari 1 dapat dinyatakan sebagai hasil kali atas faktor-faktor primanya. Tentu saja P2 P3, P4, P5, ..., Pk benar. Bagaimana menunjukkan bahwa Pk+1 juga benar?Jika k+1 adalah bilangan prima, maka Pk+1 benar. Jika k+1 bukan bilangan prima, maka k+1 = mn, dengan m dan n bilangan-bilangan asli kurang dari pengandaian sebelumnya maka, m dan n tentu saja bisa dinyatakan sebagai produk dari bilangan-bilangan prima. Sebagai akibatnya, k+1 juga merupakan hasil kali dari bilangan-bilangan contoh soal induksi matematika lengkap dengan pembahasannya. Selamat belajar detikers! Simak Video "Kata IDI Soal Pemanggilan Dokter Tanpa Gelar " [GambasVideo 20detik] pay/pay
diketahui bahwa 1 1 3