Diketahuilimas segiempat beraturan T.ABCD, dengan ruas garis AB = BC = 5β2 cm dan TA = 13 cm. Hitunglah jarak titik A ke ruas garis TC
Jawabanpaling sesuai dengan pertanyaan Diketahui kubus ABCD.EFGH dengan panjang rusuk 12" "cm. K adalah titik tengah ruas AB. Jar
Top5: Tentukan panjang busur lingkaran yang diketahui su - Roboguru; Top 6: Panjang busur lingkaran yang berjari - Tokoh Herkenal - termasyhur.com; Top 7: Panjang busur lingkaran yang berjari-jari 7 cm - Lovely Ristin; Top 8: Top 9 tentukan panjang busur ab dengan sudut pusat 120 derajat Top 9: Siap Menghadapi Ujian Nasional SMP
Kubusabcd efgh dengan panjang rusuk 12cm. jarak antara bidang ADHE dan bidang BCGF adalah. Pertanyaan lain tentang: Matematika. Top 1: diketahui
rumahPak Jojon adalah p = 3 Γ 3 = 9 m = 900 cm dan l = 2 Γ 3 = 6 m = 600 cm. Berdasarkan denah di atas, panjang dan lebar dari kamar tidur 1 secara berturut-turut adalah 24 - 12 = 12 cm dan 14 cm. Karena denah rumah dan rumah sebenarnya sebangun maka, Sehingga diperoleh panjang dan lebar sebenarnya dari kamar tidur 1 secara berturut-turut
Vay Tiα»n Nhanh Ggads. Pilihlah jawaban yang tepat dari pilihan jawaban yang diberikan! 1. Diketahui ruas garis DE 14 cm. Jika ruas garis tersebut dibagi menjadi 8 bagian, panjang tiap bagian adalah .... A. 0,85 cm B. 1,15 cm C. 1,45 cm D. 1,75 cm 2. Sintia membagi ruas garis AB menjadi 7 bagian seperti berikut Pasangan ruas garis yang sebanding dengan AR AB adalah .... A. AP PQ B. AQ AP C. PR BQ D. PR RB 3. Perhatikan gambar berikut Garis BC sejajar dengan garis DE. Panjang AC, AB, dan AD berturut-turut 10 cm, 8 cm, dan 6 cm, maka panjang AE adalah .... A. 7,5 cm B. 8,0 cm C. 8,5 cm D. 9,0 cm 4. Perhatikan gambar berikut! Nilai x adalah .... A. 8 cm B. 10 cm C. 12 cm D. 14 cm 5. Perbandingan PS SQ adalah 3 2. Jika panjang QR 15 cm, maka panjang ST adalah .... A. 6 cm B. 7 cm C. 8 cm D. 9 cm 6. Jalan Wisnu dan Jalan Krisna membentuk persimpangan seperti gambar berikut! Sepanjang jalan Wisnu akan dipasang 9 lampu jalan dengan jarak antar lampu sama panjang. Lampu pertama akan dipasang di titik persimpangan jalan Wisnu dan Krisna. Jarak lampu A dengan lampu pertama 40 m. Jika jarak pohon dengan lampu A seperti gambar 30 m, maka jarak antar lampu adalah .... A. 16 m B. 20 m C. 24 m D. 30 m 7. Diketahui titik E, F, dan G pada jajargenjang ABCD. Sisi FE sejajar dengan sisi AB. Jika AB = 14 dan EF = DF = 6, maka CG BG adalah .... A. 2 3 B. 3 4 C. 3 7 D. 5 6 8. Panjang dan lebar persegi panjang ABCD berturut-turut 24 cm dan 16 cm. Jika CF AF = 5 3, maka luas daerah yang diarsir adalah β¦. A. 134 cm2 B. 272 cm2 C. 368 cm2 D. 412 cm2 9. Perhatikan gambar berikut! Diketahui AD // BC // PQ. Jika perbandingan AQ CQ = DP BP = 2 5, maka panjang PQ adalah .... A. 12 cm B. 16 cm C. 20 cm D. 24 cm 10. Perhatikan gambar berikut! Diketahui persegi panjang ABCD berukuran 42 cm x 18 cm. Titik D berada di tengah garis PQ. Jika panjang AQ 1/6 panjang AB, maka panjang ruas RC adalah .... A. 16 cm B. 18 cm C. 21 cm D. 24 cm
1 Tinjauan Geometris Perbandingan vektor Dalam operasi aljabar vektor kita tidak mengenal pembagian dua vektor. Dalam hal ini kita hanya menentukan perbandingan panjang dua vektor, atau perbandingan ruas garis. Secara geometris terdapat tiga aturan perbandingan ruas garis, yaitu Catatan Bentuk a dapat dinyatakan dalam kalimat βP membagi AB di dalam dengan perbandingan m n Bentuk b dan c dapat dinyatakan dalam kalimat βP membagi AB di luar dengan perbandingan m n Untuk lebih jelasnya ikutilah contoh soal berikut ini 01. Diketahui sebuah ruas garis AB dengan panjang 9 cm. Jika AP PB = 2 1, gambarlah letak titik P Jawab 02. Diketahui sebuah ruas garis AB dengan panjang 4 cm. Jika AP PB = β2 1, gambarlah letak titik P Jawab 03. Diketahui sebuah ruas garis AB dengan panjang 4 cm. Jika P membagi AB di luar dengan perbandingan panjang 2 3, maka gambarkanlah letak titik P Jawab 2 Tinjauan Analitis Perbandingan Vektor Vektor posisi adalah vektor yang berpangkal di O0,0 dan dilambangkan dengan satu huruf kecil, sehingga Sebagai contoh diketahui A2, -3, 4 maka vektor posisi a adalah a = 2 i β 3 j + 4 k Jika OA + AB = OB Sebagai contoh jika diketahui A2, -1, 6 dan B-3, 2, 4 maka Menurut rumus perbandingan ruas garis Sehingga untuk AAx, Ay, Az dan BBx ,By, Bz serta PPx, Py, Pz terletak segaris dengan AB dan memiliki perbandingan AP PB = m n, maka berlaku 04. Misalkan P, Q dan R adalah tiga titik yang segaris dan berlaku PR RQ = β2 5 maka nyatakanlah vektor r dalam p dan q Jawab 05. Jika titik A, B dan P kolinier dengan perbandingan AP PB = β4 3 maka nyatakanlah vektor a dalam p dan b Jawab 06. Diketahui dua titik A6, 5, β5 dan B2, β3, β1 serta titik P pada AB sehingga AP PB = 3 1. Tentukanlah koordinat titik P Jawab AP PB = 3 1 07. Diketahui titik P2, β1, 3 dan R2, 4, 8 serta titik Q pada PR dengan perbandingan PR QR = 5 3. Tentukanlah koordinat titik Q Jawab PR QR = 5 3 PR RQ = 5 β3 08. Diketahui tiga titik yang segaris yaitu A7, 7, β2 dan Cβ3, 1, 4 dan B sehingga berlaku AC = β
AB. Tentukanlah koordinat titik B Jawab Dua buah vektor dikatakan segaris kolinier jika kedua vektor itu sejajar atau terletak pada satu garis yang sama.. Misalkan terdapat tiga vektor yang segaris, seperti gambar berikut ini Jadi vektor a dan b dikatakan segaris jika terdapat nilai k Ρ Real sehingga a = k. b Sedangkan tiga titik A, B dan C dikatakan segaris jika terdapat k Ρ Real sehingga AB = k. AC Untuk lebih jelasnya ikutilah contoh soal berikut ini 10. Manakah diantara ketiga vektor berikut ini merupakan vektor yang segaris a = 2i β 4j + 5k , b = 8i β 16j + 10k c = 6i β 12j + 15k Jawab 11. Jika vektor a = 2 i β j + x k dan b = β6i + y j + 12 k segaris, maka tentukanlah nilai x dan y Jawab 12. Diketahui tiga titik yang segaris kolinier yaitu A2, β1, p, B8, β9, 8 dan Cq, 3, 2. Tentukanlah nilai p dan q Jawab
ο»ΏSelasa, 22 Desember 2020 Edit Berikut ini adalah pembahasan dan Kunci Jawaban Matematika Kelas 7 Semester 2 Halaman 129 - 131 Bab 7 Garis dan Sudut Ayo Kita berlatih Hal 129 - 131 Nomor 1 - 9. Kunci jawaban ini dibuat untuk membantu mengerjakan soal matematika bagi kelas 7 di semester 2 halaman 129 - 131. Semoga dengan adanya pembahasan serta kunci jawaban ini adik-adik kelas 7 dapat menyelesaikan tugas Garis dan Sudut Matematika Kelas 7 Semester 2 Halaman 129 - 131 yang diberikan oleh bapak ibu/guru. Kunci Jawaban Matematika Kelas 7 Halaman 129 - 131 Ayo Kita Berlatih 1. Salinlah dua garis berikut. Kemudian dengan menggunakan jangka dan penggaris bagilah masing-masing garis menjadi 7 bagian yang sama panjang. Jawaban Langkahnya,1. Ukur panjang garis dengan penggaris2. Bagi hasil pengukuran dengan 73. Rentangkan jangka selebar hasil pengukuran4. Letakkan jarum jangka ke pada ujung garis5. Buat penanda dengan jangka pada garis6. Ulangi cara ke 5 pada penanda yang baru 2. Salinlah dua garis berikut. Kemudian bagilah masing-masing garis dengan perbandingan 2 3. Jawaban Langkahnya, 1. Ukur panjang garis dengan penggaris 2. Bagi hasil pengukuran dengan 5 3. Rentangkan jangka selebar 2 x hasil pengukuran 4. Letakkan jarum jangka ke pada ujung garis 5. Buat penanda dengan jangka pada garis 3. Diketahui panjang ruas garis AB adalah 12 cm. Bagilah ruas garis AB tersebut menjadi 5 bagian sama panjang. Jawaban Langkahnya, 1. Bagi 12 dengan 5 2. Rentangkan jangka selebar hasil bagi3. Letakkan jarum jangka ke pada ujung garis 4. Buat penanda dengan jangka pada garis 5. Ulangi cara ke 4 pada penanda yang baru 4. Perhatikan gambar berikut. Tentukan nilai p. Jawaban AD / CD = BE / CE3 / 9 = p / 12p = 12 x 3 / 9p = 4 cmJadi, nilai p adalah 4 cm. 5. Perhatikan gambar berikut. Tentukan nilai x. Jawaban 3 / 6 = x / 4 + 6x = 10 x 3 / 6x = 5Jadi, nilai x adalah 5 cm. 6. Perhatikan gambar berikut Tentukan nilai x dan y. Jawaban AD / BD = AE / CE6 / 4 = x / 2x = 6 x 2 / 4x = 3 cmDE / AD = BC / AD + BDy / 6 = 10 / 6 + 4y = 1 x 6y = 6 cmJadi, nilai x = 3 cm dan y = 6 cm. 7. Perhatikan gambar berikut Tentukan panjang AB. Jawaban EF = CD x AE + AB x DE / AE + DE9,8 = 8 x 7 + AB x 3 / 7 + 39,8 = 56 + 3AB / 1098 = 56 + 3AB3AB = 98 - 56AB = 42 / 3AB = 14 cmJadi, panjang AB adalah 14 cm. 8. Diketahui titik E, F, dan G pada trapesium ABCD. Sisi FE sejajar dengan sisi AB. Jika AB = 7, DC = 14, DG = 8, FG = 4, GB = x , dan GE = y , maka nilai x + y adalah Jawaban FG / AB = DG / BD4 / 7 = 8 / 8 + x4 x 8 + x = 8 x 732 + 4x = 564x = 56 - 32x = 24 / 4x = 6EG / CD = BG / BDy / 14 = x / x + 8y / 14 = 6 / 6 + 8y = 6 / 14 x 14y = 6x + y = 6 + 6 = 12Jadi, nilai x + y adalah 12. 9. Perhatikan gambar berikut. Diketahui Trapesium ABCD, dengan AB//DC//PQ. Jika perbandingan AQ QC = BP PD = 3 2. Jawaban AB / x = BD / PD 10 / x = 2 + 3 / 2 5x = 20 x = 4 cmDC / PQ + x = AC / AQ 20 / PQ + 4 = 3 + 2 / 3 PQ + 4 = 60/5 PQ = 8 cmJadi, panjang ruas garis PQ adalah 8 cm.
BerandaDiketahui panjang ruas garis AB adalah 12 cm . Bag...PertanyaanDiketahui panjang ruas garis AB adalah 12 cm . Bagilah ruas garis AB tersebut menjadi 5 bagian sama panjang ruas garis AB adalah . Bagilah ruas garis AB tersebut menjadi bagian sama Universitas Muhammadiyah MalangPembahasanBagilah ruas garis AB tersebut menjadi bagian sama panjang. Jika kita gambar ruas garis AB tersebut adalah sebagai ruas garis AB tersebut menjadi bagian sama panjang. Jika kita gambar ruas garis AB tersebut adalah sebagai berikut. Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!2rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!FDFara DestaSangat berguna!KFKarina Febi Sifaningtyas Ini yang aku cari! Makasih β€οΈ Bantu bangetDADita Ananta Mudah dimengerti Makasih β€οΈΒ©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia
Kelas 12 SMADimensi TigaJarak Titik ke GarisKubus mempunyai panjang rusuk 12 cm. Titik T merupakan perpotongan antara diagonal EG dan FH. Jarak titik A garis ke ruas CT adalah....Jarak Titik ke GarisDimensi TigaGEOMETRIMatematikaRekomendasi video solusi lainnya0156Diketahui kubus dengan panjang rusuk 6 cm. Jara...0148Diketahui kubus ABCD. EFGH dengan panjang rusuk 8 cm. Jar...0140Diketahui kubus ABCD EFGH dengan panjang rusuk 6 cm. Jara...0348Diketahui kubus dengan panjang rusuk 6 cm. Jara...Teks videoDisini Diketahui sebuah kubus memiliki panjang rusuk yaitu 12 cm. Adapun titik t di sini adalah perpotongan diagonal EG dan FH akan dicari jarak dari titik A ke ruas garis CT nah disini kita akan menarik garis yang tegak lurus yang menghubungkan antara titik dengan ruas garis tersebut maka kita bisa makan di sini titik O di mana tegak lurus nya di titik tersebut Nah untuk memudahkan perhitungan kita akan menggunakan segitiga ACD kita bisa gambarkan seperti ini disini tegak lurus begitupun untuk titik c di sini. Nah. Adapun panjang AC di sini merupakan diagonal sisi berarti kita tinggal menghitung akar 2 di mana A itu adalah panjang rusuknya yaitu 12 detikjadi 12 β 2 cm, kemudian panjang BC itu adalah rusuknya yaitu 12 cm dan panjang AG yaitu diagonal ruang berarti kita tinggal menggunakan rumus a β 3 sehingga diperoleh panjang AB adalah 12 akar 3 cm kita akan mencari a di sini panjang ao kita bisa makan ini panjangnya adalah x yaitu panjang ao kemudian panjang Oge yaitu 12 akar 3 dikurang X kita bisa menuliskan disini untuk mencari panjang aku yaitu menggunakan persamaan rumus phytagoras yaitu antara segitiga aod dengan segitiga BOC kita bisa Tuliskan di sini ya itu untuk panjang daripada OC kuadrat ini sama saja dengandari AC kuadrat dikurang a o kuadrat = BC kuadrat dikurang kuadrat kita bisa ganti sinyal di sini yaitu 12 akar 2 kuadrat kemudian itu adalah x kuadrat kemudian GC di sini 12 dikurang 12 akar 3 dikurang x pangkat 2 ini diperoleh 144 dikali 2 dikurang x kuadrat = 144 dikurang 144 dikali 3 dikurang 24 akar 3 x + x kuadrat Adapun x kuadrat nya disini kita bisa coret karena bernilai nol sehingga288 = 144 dikurang 144 x 3 yaitu = 4 3 2 di sini ditambah 24 akar 3 x diperoleh 24 akar 3 x 1 = 288 dikurang 144 ditambah 432 yaitu nilainya sama dengan 576 kita dapatkan X itu sama dengan 57 per 24 akar 3 atau sama dengan di sini 24 per akar 3 ketika kita rasionalkan yaitu dengan mengalikan akar 3 dengan per akar 3 maka diperoleh 24 per 3 akar 3 = 8 akar3 maka panjang X disini tidak lain adalah panjang daripada ao sehingga kita bisa menyimpulkan bahwa jarak dari titik A ke ruas garis CT yaitu sebesar a o itu 8 β 3 cm atau pada optik yang benar itu adalah opti De sekian sampai jumpa di soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
diketahui panjang ruas garis ab adalah 12 cm